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Methods are cited for the approximate solution of position difference - diff- 
erential encounter games and for the exact solution of evasion games [l ,2], 

based on the use of certain finite-dimensional procedures for the determin - 
ation of the control [3 ,4], The paper adjoins the investigations in [l-11]. 

1. We examine the controlled system 

5’ (0 = Az (t) + A,z (t - T) + B (t)u - C (tb + w (t) (1.1) 

to-< t<e, UEPCE,,, UEQC& 
z = const > 0 

Here IC is the n -dimensional phase vector; the vectors u and U are the first and 
second players * controls, respectively ; P and Q are convex compacta ; A and AT 
are constant matrices and B (t) and C (t) are continuous matrices; w (t) is a given 

perturbation (a Lebesgue - integrable function). The initial state 2s (s) E H [l ,a] 
and a closed set 1c1 c E, are prescribed. By choosing control u the first player 
strives to ensure the inclusion z (t*) E fk! for at least one t, E It,, 61 ( the 
game of encounter by an instant) or the inclusion x (fi) E M (thegameofencounter 

at an instant) for the system’s phase vector, The second player strives to choose his 

control u so that the inclusion 2 (t) E -11 is not satisfied for any t E [to, 61 
(the evasion game). 

The position p, the strategies U and V and the motions x [t; PO, VI and 

2 It; PO, VI, PO = {to, to (41 h ave been defined in [2 ,5 J. The formalized state- 

ments of the problems (1) of encounter with set :1l;r at instant 6 , (2) of encounter 

with set M by instant 6 and (3) of evasion of set iM , have been presented in the 

same References. From the results in these papers it follows that if strongly U - stable 
( u -stable) sets Kt C H, to < t < 6, KBO C hf and x0 (s) E Kt, are 
prescribed, then the strategy u, extremal to them solves problem 1 (problem 2). 

Here Kso is the 0 section [6] of set Ka. A similar result holds for problem 3 

[lo]. The determination of the control u (1, I (8)) on the strength of strategy U, 
requires us to solve a certain extremal problem in Hilbert space 8. We indicate be- 

low methods for constructing the first and second player’s strategies ensuring the exact 
solution of problem 3 and the approximate solution (to any degree of accuracy ) of 
problems 1 and 2 ; these methods are based on the solving of certain finite-dimensional 

extremal problems. 
Let X (to, x0 (s)) be the sheaf of all motions z (1) = z (t; po, u, v), u E 

{u ‘;)h’ u E (v (-)! 11-k x (t*) = {Y (4 = 32 (2; +s) 12 (2) E x (to, 
be the section of sheaf X (to, z. (s)) by the hyperplane t = 1, ; 

T ,: H --t Ec~+~),~ be the following operator: 
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T,,,x (s) = y(O) = x (O), w, = + 

-(i-l)0 

y(i) = to---/~ s m x s as, 0 i =l,....m 
-io, 

F?n (x (4) = iil II P II2 

II x (4 II n&T = Pm (2 (4) + II Y(O) II a)“z 
Lt = Kt n x (1) # 0 

DE be the closed e -neighborhood of set D; II x (s) llr 
and Kt, to\< t\<ti , be a system of closed sets in H. 

50 (s)) is compact in I? [to, ;6] [l],from a number 
number B = p (e, z. (5)) > 0 such that the inequality 

II 2 (h) - z (&I II < v2e 

bethenormin H [1,2]; 
Because the sheaf X (to, 
e > 0 we can find a 

(1.2) 

holds for any motion x (t) E X (to, x0 (8)) and any instants tl and 1s, I .t~ - 

fzI\(P l 
Using (1.2 j , by direct bounds we verify 

L e mm a 1.1. The inequality 

1 i II Xl (t -k 4 -x2 v + 4 II2 ds - F, (21 P + 4 - 5.2 v + 4) I< 2d 
-T 

isvalidforany m > x / j3 and Xi (1) E X (to, xo (s)), i = 1, 2 and 1 E [to, +I. 
If the sets &, lo < 1 f 6 , are convex and closed, then for any element 2 (8) 

we can find the unique elements y, (8; t, x (8)) and g (8; t, 2 (8)) with properties 

II x (4 - Y (6 f, r (4) II, = vLggL)I 32 (4 - Y (4 II, 

II x (4 - Y, 6; t7 2 6)) II,, f = tl y&II x (4 - Y (4 II,, 7 

Taking Lemma 1.1 and Theorem 1.2 of [12] into account, for all tE [to, @I, 

m > 'c / b and x (s) E X (1) we obtain the estimate 

II Y (8; 1, 5 (s)) - Ym 6% 19 z (a)) 117 < x (1.3) 

x = (4e~B1 + 4eSF)‘J9, 231 = sup {II Xl (s) - 

X2 (S) IlT 1 Xi (S) E X (t), 1 E it@, *IV i = I9 2} 

uniform relative to any system of closed sets Kt c H, such that 
L#0- 

lo < t < 6, 

We define strategy U, as follows: 

U, (t, z (8)) = (IL, E P I B (t) u, (z(O) - y(O)) = 
max B (t) u (z(O) - y(O))}, y = T,x (s) 
UEP 

Here z is the vector from set T,,,& closest to vector y . 
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The orem 1.1, Let the convex and closed sets Kt, to < t < @ , be strongly 
u -stable (be u-stable), B&, C M and z,, (s) E R,. Then,for any num- 

ber e > 0 we can find a number r?zo = m, (a, x0 (a)) such that strategy U, 
ensures that all motions r [t; po, U,] fall into the E -neighborhood of set M at 
instant @ (by instant 6 ) for any m > n%,. 

The theorem *s proof follows the plan of the proof of Lemma 2.1 in [S J S with the 
use of the obvious equality z = T,y, (a; 2, I (s)) and of estimate (1.3 ) . We note 
that estimate (1.3 ) is true if we consider 

B1 = SUP $ mi& II 5 (9 - Y (8) II, 12 (4 E x Q), t E ito, +I) 

It is easy to see that the above results remain true for nonlinear systems with aftereffect 
satisfying the conditions in [ll]. 

2. Let us show that to solve problem 1 (problem 2 ) approximately from any 
position from which it is solvable we can use the strategy of aiming at certain sets 
constructed on the basis of Position absorption sets for certain approximating systems 
without time lag. Together with system (1.1) we consider the following approxi - 
mating systems : 

&I,$@) 1 dt = &cot + f&cI.r-‘~y(~~ + B (t) 24 - c (t) u + w (t) (2.1) 

&Cl, / dt = ~-&w - w-y) 

&p,/& = o)-lyci-1, - ~;;tyw, i = 2, . . ..m 

to<t<*, @EP, UEQ 

Let Wt* C H and wt* (e) C H be sets of position absorption at instant 6 
(by instant 6 ) of sets M and Me , respectively , by system (1.1) [ 1,5 ] and 

W,s (e) be the sets of position absorption at instant 6 (by instant 6 ) by sys- 
tem (2.1) of the following set [3,43 : 

I&* -- {# = (y(O), * . ., yq E*qm+lp~ ?,bO)EM’?, !P E &I, i=i....,n~ 

Taking the estimates in [7 ,8 ] into account, we can verify the validity of the following 
statement, 

Lemma 2.1. For any a > 0 we can find a number N = N (a) such that 
for any number m >N the inclusions 

wt+ n x (t) c ITZW,, @)I n x ft) c @-t* @a) n x (t) 

are fulfilled for all t E [to, @I . 
There holds 

Lemma 2.2. For any e> 0 and tEho, $1 there exists 8 = 8 (2, 

4 > 0 ensuring the advent of the relation 

wt* (6) n x (t) C rwt* n x (i$l” 

We denote Lmt (a) = C?~W,,,, (a)1 fl X (Q, Y (8; t, x (s), m, a) and 
ID &; t, z (s), m, a) are elements with the properties 
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We assume that sets w,t (a) are convex. Then, as follows from (1,4), for any 
x > 0 we can find a number 1\1 = N (x) such that the estimate 

I1 Y (s; 8, z (a), m, a> - m 6; 8, * @I, m, a) J/z < x (2.2) 

holds for all m > N, t E [to, fN, CL > 0, 8 (s) EE L,t (a) and x (8) E X (1) . 
On the basis of Lemmas 2.1 and 2.2and of Theorem 1.2 of [12], with due regard to 
the boundedness of cl = Sup (If $1 (a) - 3s (s) J/Z [ , Xi (8) E Xe (t), i = 1, 2; 
tE ~~~,~J~,weget~tforany a>0 and t E [to, $1 we can find a num- 
ber 8 = S (8, 8) > 0 such that for each a cz (0, 6) we can find a number N = 

iV (a) satisfying the condition: for every m > N the inequality 

II Y, (s; 1, x (a)) - Y (8; E, 2 (s),9, a) IIT C e (2.3) 
is valid for any element 5 (s) E X (I). Here y, (s; t, r (s)) is the element of 
Wr* n X (S) a cIosest to x (s) in H . 

We define the strategy Ue as follows: 

Ue (t, X(S)) = {u* E P 1 B (t) u+ (z(o) - $0’) = 

max B (t) u (z(O) - Y(O))}, 
UEF 

Y = %$a: (9 

. Here z r.s the vector from Wm,t fat) J-j Tm,X (t), closest to vector y , a, is 
;Tan;mber from the interval {O, 6 (8, a)) and m, is some number greater than 

* * 
Theorem 2.1. Let 20 (s) E WtQ*. Then for any cr > 0 we can find 

e > 0 such that the strategy Ue ensures that the motions x Jf = x J6; Q@, VeJ 
fail into Mu at instant @ (by instant @ ). 

The proof of this theorem is based on estimates (2.2 ) and (2.3 ) and on the equal- 

ftr z = Z’,,,*ti (s; t, I (s), m,, a) and follows the scheme of the proof of Theorem 
2.1in[6]. 

We define the strategy U,,,., as follows: 

u7n.a (t, 5 (s)) = (u, Cz p 1 B (W* (Z*fO) - v*(O)) = 

max B (l)U (Z*(@ - Y*‘“‘)L 9, = TV&X 0) 
UEP 

Here Z* is the vector from W,t (a) J-l T,X (t) , closest to y, . prom Theorem 
2.1 follows 

Theorem 2,2, Let z. (s) E TV*,,*. Then for any e > 0 we can find a 
number S > 0 with the property: for any finite p~~~o~g A of the segment 
[to, @J , with diameter & (A) <S , we can find a > 0 and N =: N (e, A) 
> 0 such that the strategy U m,rx ensures that alI the approximating motions 

XA td = 34% [t; PO, unt,a ] [5,6 ] fall into Me at instant 8 (by instant 6 )if 
only m > N. 
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3. Let us establish that problem 1 for system (1, I > is equivalent to the same 
problem for a certain linear system without time lag of the same d~rne~~o~al~ty~ In 
this and subsequent sections the matrkes A = A (Q and A, = A, (1) are con- 
tinuous in t. Let F (1, g) be the fundamental matrix of system (1.1) [l); At,, tW: 

H-+R be the solution operator of the homogeneous system corresponding to (1.1) 

[93: Di*, f” : Jf + CL be the following operator Dt,, 1~ x (s) = y (O), where 

Y @I = At*, t* 3: @I- It is easy to prove the next statement by using the properties 

of matrix F (t, E) PI. 

Lemma 3.1, The equality 

At*, g i P (t* -I- 595) 2 (E) @ = i F (5 + s; !J 2 (6) d5 
1, t -3 

holds for any summable n -dimensional function z (1) and any t* < 1* < 5 

from [lo, Sl 
Together with system (1.1) we consider the system without time lag 

3. = F (8, f) (B (2)u - c (t)o + w WI (3+1) 

8&t<*, %EP, PEQ 

The following strategy U** constructed for system (1,1), 

U” (1, x (s)) = {ZP E P 1 F p, il) B (2) u* (z - Di,ff x (s)) r= 

fg; F P, m 0)~ cz - JLS 2 w 

is called the strategy extremal to the closed sets & C En, $0 < d < e , 
Here z is the vector from Zt ) closest to the vector Dr.* x ($1 . The strategy 

V* extremal to sets Zt is defined similarly q Using Lemma 3.1 we can prove 

Lemma 3.2. Let the closed sets Zf c .&, , lo < 1< 6, be strongly U -stable 
( stro@y v -stable ) for system (3.1) and let Dip,f10 (8) E Zt,. Then the’strategy 

U* (V*) extremal to sets & ensures that all motions 2 [bl = z Et; po, v*1 
(;E: [t] = x [t; po, V* 3) of system (I. 1) hit onto sets Ze at instant * . 

Let Wt* and Wt be the sets of position absorption of M by systems (1.1) 

and (3.1) , respectively I at instant 6 . 

Theorem 3.1. x,, (8) E Wfb* if and only if 

&$X0 (s) = wt, ~3.2) 

If (3.2 ) is fulfilled, the strategy ,U* extremal to Wr solves problem 1. The 
proof of the theorem is based an Theorem Il7,l on the alternative in [3] and on 

Lemma 3.2. 

4. Let us indicate another method for solving problem 2 approximately, Let 
tfi = E$j < * * I < f& = q &*I - & = o,* = (6 - t*) i m, E’ = 0, * 1 

. + m- 3 + We consider the system without time lag 
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i =i,. . ** m t*<t<d, ICEP, crQ 

Let i (1) = min (i 1 El > 1, i = 1, . . ., m); D,(m): H -b E~m_f~f~+l~n 
be the following operator: 

The strategy U, constructed for system (1.1) by the rule 

u* ($7 x (3)) = {U* E P I L(m) (t)B (t)u* (2 - 

D,(m) x (8)) = u”,” L(m) (t)B (t)u (2 - L)pQ (7: (s))) 

is called the strategy extremal to the closed sets zt C Gn, , Here z is vector 

from n+“) Zt, closest to D,fmf x (s) , where zEtfmf: E,, + E(,,+~(Q+~)~ is the 
operator of projection onto the last (m - i (1) + I)n coordinates. The strategy 

V* extremal to & is defined analogously, 

For an arbitrary e > 0 we choose the number 6 (e) > 0 so as to fulfil the 

bound 

The number 6 (a) exists by virtue of the compactness of sheaf X (to, x0 (s)) in 

F [lo, e] , We introduce the sets 

Nitrn) (01) = [El, Ei+rl X E(f-l)n X Ma X 6(772-()?I, I = 1,. . . , i?1 

N”“’ (a) = i;, NI”’ (a) 

assuming a > 0. Obviously ,set NCm’(a) is closed in ilo, 6] X E,. We de- 

note : pp: E,, -+ En is the operator of projection onto the coordinates numbered 

(i (t) - I)n + 1, . . ., i (t)n. Similarly to Lemma 3.2, using estimate (4.2 ) we 

can establish 

Lemma 4.1. Let w,* < 6 (e), the closed sets Zt C E,, be ZJ -stable 
relative to N(m) (a) (be strongly u -stable) for system (4.1) and D,~‘“)~IJ (8) 

E zt,. Then the strategy U, (t/‘,) extremal to sets 2, ensures that the foll- 

owing condition is fulfilled for the motions x [1] E x It; PO, u*] (x it] = x It; 

pot V,l) of system(1.1): 5 [t,l E Ma+” for some t, E Ito, S] (x I&l E 

(Pt,@) &*I” for all t, E [to, 81). 
We introduce notation: I%‘-,* are sets of position absorption of fif by system 

(1.1) by instant 6 ; J+‘,(m) (a) are sets of position of absorption of M by system 

(4.1) by instant 6 . 

Theorem 4.1, If x0(s) E Wto*, then for any e >, 0, CC > 0 andnt such 
that o,* < min (p (a / 2), 6 (e)f the strategy U, extremal to W$m)(a) ensures 
that the motions x [t] = x 11; prt, U, ] fall into &fa+~ by instant 6 . The theorem 
can be established by using Lemma 4.1 and the properties of sets ~;f/‘,(t?lf (a)_ 
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5. Let us study the problem 3 on evasion of target M, assuming the existence 
of a set R satisfying the relation P = Q + R. Let Y (t, 5) be the funda- 
mental matrix of the homog~n~s system corresponding to system (2.1) ; Y$ (t, S) 
be the matrix composed from the first k rows of matrix 

-qmt+l)n be an operator of the form 
Y (t, 5) ; A& : H ++ 

A*mt;C(Y) = (y(a), . * ., pq, $0) = s(0) 

-(i-l) 0, 

yw s (JQ" 1 x(s)&, i =l....,mt 

-40, 

yo* = Azgo(s) 

to 

w = max (i 1 t - io, $3 to, i = 0, . , . , m) 

w* (t) = (w (0, 0, - * *, 0) E Jqm+ljn 

22, = R X ii (0) 
i=l 

Here (0) is the set consisting of the null vector of space En. 
We define the strategy V, by the system of sets Y, (t, z (s)) of the form 

v, (t, 32 (s>) = (v* 1 (g(O) (I, z(s)) - [A$ (s)](O)) u” = 

mz; (g(a) (4 5 (8)) - L4*,, 5 (s)](o)) u) 

Here g (t, x (8)) = {g(O) (t, x (5)). . . . , g’“f’ (t, x (s))) is the element of set 
&,L,“(t fs),closest to i4?+ (s) . 

Theorem 5.1. For some number e > 0 let L,” (t) fl MS = @ for 
any instant t E Ito, @]. Then we can find a number N such that the strategy 
V, solves problem 3 for all m > iV . 

The theorem’s proof relies on the results in [? ,10 ] l We note that when set M 
is convex the hypothesis on Theorem& 1 is fulfilled if the quantity 
defined in [Z] is greater than zero for aII t E l[t,, 61. 

8 (to, t, x0 (s)) 

The authors thank N , N . Krasovskii and Iu , S. Osipov for formulating the problem 
and discussing the results. 
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