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Methods are cited for the approximate solution of position difference - diff-
erential encounter games and for the exact solution of evasion games(1,2],
based on the use of certain finite~-dimensional procedures for the determin -
ation of the control [3,4]. The paper adjoins the investigations in [1—11].

1. We examine the controlled system

() =Az(t) + Az (t —1) + B (hu — C (thv + w (2) (1)
0‘<l<ﬁ7 ugchTu UEQCEM
T = const > 0

Here z is the n -dimensional phase vector; the vectors ¥ and v are the first and
second players* controls , respectively; P and @ are convex compacta; 4 and A«
are constant matrices and B () and C (f) are continuous matrices; w (2) is a given
perturbation (a Lebesgue - integrable function), The initial state Z, (s) &= H [1,2]
and a closed set M (— E, are prescribed. By choosing control wu the first player
strives to ensure the inclusion z (Z,) & M for at least one ¢, & [¢,, 0] ( the
game of encounter by an instant) or the inclusion z (8) & M (the game of encounter
at an instant) for the system's phase vector. The second player strives to choose his
control v so that the inclusion z (f) & M is not satisfied for any ¢ & [¢,, 8]
(the evasion game).

The position p, the strategies U and V and the motions z [£; py, U] and
z [t; po, V1, Py = {to, zo (s)} have been defined in [2,5]. The formalized state-
ments of the problems (1) of encounter with set M at instant ¥ , (2) of encounter
with set M by instant ¥ and (3) of evasion of set M , have been presented in the
same References. From the results in these papers it follows that if strongly « -stable
( u-stable)sets K, C H, t,<t<<® Kgo " M and 2z, (s) = Ky, are
prescribed, then the strategy [J, extremal to them solves problem 1 (problem 2).
Here Ky, is the ( section [6]ofset Kg. A similar result holds for problem 3
[10]. The determination of the control % (¢, « (5)) on the strength of strategy U,
requires us to solve a certain extremal problem in Hilbert space fI. We indicate be-
low methods for constructing the first and second player's strategies ensuring the exact
solution of problem 3 and the approximate solution (to any degree of accuracy) of
problems 1 and 2; these methods are based on the solving of certain finite~dimensional
extremal problems,

Let X (2o, Zo (s)) be the sheaf of all motions z (f) = z (¢; py, 4, V), u &
@ad ve () M XE) =@ =20 +9]20 c X (t,

Zy (s))}  be the section of sheaf X (¢, zo (s)) by the hyperplane ¢ = ¢, ;

Tm: H-— Epi1). be the following operator:
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y (0) .
Tox(s)=1|: y® =z (0), o, =-—
(m) m
¥
—(i—=1Dw,,
y(i)_:{o;;/e S x(s)ds, i=1,...,m
—i(l)m

nlz@) = 310

(26 me = (Fm (z () + [| 4@ [ )
Li=K:N X+

D¢ be the closed & -neighborhood of set D; || z (s) [ bethenormin H [1,2];
and Ky, 8y < ¢ <( O , be asystem of closed sets in H, Because the sheaf X (i,
Zg (s)) is compactin C* [¢,, #] [1),from a number ¢ > 0 wecanfind a

number B = B (e, z, (s)) > 0 such that the inequality

| 2 () — () || < Yo (1.2)

holds for any motion z (§) = X (f,, Z, (s)) and any instants £, and &, |t —
% | << B . Using (1,2), by direct bounds we verify

Lemma 1,1, The inequality
0

| S haa(t +5) 2ot + ) [P ds — Fru (1 (¢ 4 5) — 22 (¢ + )| < 272

-1

isvalidforany m > 1t /B and 2; (#) = X (8, 29 (s)), i = 1, 2 andt € [¢,, 81,
If the sets K, ¢, < t<C @, are convex and closed, then for any element Z (s)
we can find the unique elements ¥y, (s; ¢, z (s)) and y (s; ¢, z (s)) with properties

z(s)—y st 2D, = I?§2L|I z(s) —y ()l
yis t
12(s) = Ym (s ts (D Iy, . = min [[z(s) ~y (s}, ,
v ()L, '

Taking Lemma 1,1 and Theorem 1,2 of [12] into account, for all ¢ [¢,, 0],
m>7t/f and z(s) = X () we obtain the estimate
Ny stz (@) —ym stz (@) e <<% (1.3)
x = (4e)/ B, + 4e¥)"r, By = sup {|| 21 (s) —
Ty (S) ”T | i (S) e X (t)v te [tOs 017 i = 17 2}
uniform relative to any system of closed sets K, H, ¢ < ¢<C ¥, such that
Li+O.
We define strategy {7, as follows:
Un (¢, 2(5)) = {1t € P| B (t) un (@ — y) =
max B (f) u (z0 — y®)},  y = Tz (s)

uespP

Here z is the vector fromset 7', [, closest to vector y .
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Theorem 1,1, Let the convex and closed sets Ky, 2, < £ <{® , be strongly
u -stable (be u-stable), Koo CC M and z,(s) < K,. Then,for any num-

ber &> 0 wecanfinda number my, = m, (e, z, (5)) such that strategy U,
ensures that all motions 2z [# p,, U,,] fall into the & -neighborhood of set M at
instant @ (by instant ¥ ) for any m > m,.

The theorem 's proof follows the plan of the proof of Lemma 2,1 in[6], with the
use of the obvious equality z = T,y (s; ¢, z (5)) and of estimate (1,3), Wenote
that estimate (1. 3) is true if we consider

By = sup{ min [|2(5)~y () |2 (6) = X (), £  [to, )
syl

It is easy to see that the above results remain true for nonlinear systems with aftereffect
satisfying the conditions in [11],

2. Let us show that to solve problem 1 (problem 2 ) approximately from any
position from which it is solvable we can use the strategy of aiming at certain  sets
constructed on the basis of position absorption sets for certain approximating systems
without time lag, Together with system (1,1) we consider the following approxi -
mating systems:

dy® | dt = Ay® + Aw "y 4+ B{t)u — C({t)v +w(t) (2.1)
dy(l) /dt = m;;/:ym) — “’?r}y(l)

dy® [ dt = (,):nly(i—l) — mr_nly(i)’ i=2...,m

t0<t<'§', uEP, UEQ

Let W, C H and W,* (e) C H be sets of position absorption at instant &
(by instant © )ofsets M and Me® ,respectively,by system(1,1) [1,5] and

Wms (8) be the sets of position absorption at instant ¢ (by instant € ) by sys-
tem (2, 1) of the following set [3,4]:

M* = {y = (y("?, .. ovy y(m)) = E(mu)nl y(ﬂ)EMe’ y(i) € E, i= 1,...,m]
Taking the estimates in [7, 8] into account, we can verify the validity of the following
statement,

Lemma 2,1, Forany o > 0 we can find a number N = N (&) such that
for any number m >N the inclusions

W X () TUTaWme ()] NX () CTWe* (22) N X (2)

are fulfilled for all ¢t [¢4,, €] .
There holds

Lemma 2,2, Forany & >0 and #&lt, ®] there exists 8 = &8 (2,
g) > 0  ensuring the fulfillment of the relation

W) N X@CT W X(@)F

We denote Ly (@) = [TmWme (@)1 N X (2), ¥ (s; ¢, z(s), m, &) and
w (s; ¢, z (s), m, a) are elements with the propérties
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lz(s)—y(st,z(s)mya)f,= min |z(s)—y@),
¥ (DL (@)

r{s)—wi(s;t,x(s),m, q = min z{(s)—y (s

|z (s) (s;t, x(s) M, < u(s)eLmt(ay =y 6) 1, .

We assume that sets Wm: (@) are convex, Then,as follows from (1,4),for any
% > 0 we can find a number IV = N (x) such that the estimate

Ny(sst,z(s), m a) —w(s; 2, z(s), m, @) [}« << % (2.2)

holds forall m > N, t & [£y, ), 2 >0, 2 (s) = L (@) 2nd Z (s) = X () .

On the basis of Leramas 2,1 and 2, 2and of Theorem 1.2 of [12], with due regard to

the boundedness of cr = Sup {[ &1 (5) — Z (B | |, = ()= X2 (Y, i=1,
L ey, ]}, wegetthat forany ¢>>0 and 2& [, #] we can find a num-

ber 8 = § (¢, &) > O such that for each « & (0, §) we can find a number N =
N (a) satisfying the condition: for every m; > N the inequality

lge 56, 2(6) —y(sst,z(s),ma)lc<<e (2.3)

is valid for any element & (s) & X (#). Here y, (s; £, ¢ (s)) is the element of
W () X (1), closestto z (s} in H .
We define the strategy Ut as follows:

Ut (t, 2(3)) = {1y & P| B (t) uy (20 — y©) =
ma;cB tYu (20 — y@)},  y=Tpz(s)
ue

Here z is the vector from W ¢ (#,) [} Tm,X (£), closesttovector y , «, is
some number from the interval (0, 8 (¢, &)) and m, is some number greater than
N (a,).

Theorem 2,1, Let x,(s)e Wy*. Thenforany ¢ > 0 we can find

e > 0 such that the strategy U?® ensures that the motions z [¢] = z [¢; p,, U?l
fall into MY atinstant ¢ (byinstant ¢ ),

The proof of this theorem is based on estimates (2, 2) and (2,3) and on the equal-
ity z = TnW(s;t, x(s), my, @) and follows the scheme of the proof of Theorem
2,1in{[6].

We define the strategy U, , as follows:

Uma (¢, 2 (s)) = {uy = P| B (Du, (2,9 — y,®) =
max B (t)u (2, — y, M)}, yp = TuX ()
uesP

Here 3, is the vector from Wy (@) [} TpX (2), closestto y, . From Theorem
2, 1 follows

Theorem 2,2, Let x,{(s)= W,*. Thenforany e >0 wecanfinda
number 8 >> 0 with the property: for any finite partitioning A of the segment
[t,, @1 , with diameter § (A) (8, wecanfind & >0 and N = N (g, A)
> 0 such that the strategy U, ensures that ail the approximating  motions

za (2] = za [#; Po» Unm, o] [5,61fall into M® atinstant & (by instant © )if
only m > N.
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3. Let us establish that problem 1 for system (1, 1) is equivalent to the same
problem for a certain linear system without time lag of the same dimensionality, In
this and subsequent sections the matrices 4 = 4 (¢} and 4, = A4, (f} are con-
tinuous in  Z. Let F (¢, §) be the fundamental matrix of system (1.1) [1]:4,,, 4

H — H  be the solution operator of the homogeneous system corresponding to (1,1)
[91; D.,, ¢ :H— E, be the following operator D, -z (s) = y (0), where
y(s) = A,, x(s). Itiseasy toprove the next statement by using the properties
of matrix F (¢, ) [11.

Lemma 3,1, The equality
i* t*
A S P+ nz@e=\FC+ss@)d
ts s
holds for any summable % -dimensional function 2z (#) and any By <O t* < §
from [2,, O]
Together with system (1, 1) we consider the system without time lag

y=F® 0B @u—C@Hv+w) (3.1)
t0\<\t<\ﬁe ﬁEP, UEQ
The following strategy [7*, constructed for system (1,1),
U(t, z@)={*s P|F® §) B)u*(z — Dipz(s) =
max F (&, )B (Du (z — D; o z ()}
(=1
is called the strategy extremal to the closed sets Z; C En, fo <K EC 8
Here z is the vector from Z; , closest to the vector D; g & (s) . The strategy
V* extremal to sets Z, is defined similarly, Using Lemma 3.1 we can prove

Lemma 3,2, Letthe closedsets Z; < E,, ¢ <\ I < &, be strongly u -stable
(strongly y -stable ) for syster (3,1) and let D, ¢4 (s) & Zy,. Then the strategy
U* (V*) extremaltosets Z, ensures thatall motions z [¢] = z [¢; p,, U*]
(x [t1] = z [t; po, V*]) of system (1. 1) hit onto sets Zy at instant § .
Let W,* and W, be the sets of position absorption of M by systems (1,1)
and (3. 1), respectively, at instant ¢ .

Theorem 3,1, x4 (s) & Wy* if and only if
D102 (s) € Wy, (8.2)

I (3,2) is fulfilled, the strategy [U* extremal to W, solves problem 1. The
proof of the theorem is based on Theorem 17,1 on the alternative in [3] and on
Lemma 3.2.

4. Letus indicate another method for solving problem 2 approximately, Let
tﬁ:§0<---<§m=ﬁq §i+i‘“§i:’@m*:(ﬁ‘”to)1’m, i=20,..
., m—1, We consider the system without time lag
v e FELDB@u—Ce -Lw(t)], testy, &) (4.1)
Yi T o r= 0l
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i=1,....,m LI, uwveP, v

Let i {f) = min {l‘ &,‘ >t i=1,.. o m}; DM H > E(m.f(g)“)n
be the following operator:;

Dt, & (1) z (s)
DMz (s) =)
Dz |
F (‘t(f)‘ 1
L(m) (t) —_
E (“vm’ 1

The strategy U, constructed for system (1, 1) by the rule
Uy (t, 2 (s)) = {uy  P| L™ (1)B (t)uy (z —
D™ z (s)) = max L™ (B (t)u (z — D™ z (5))}
=

is called the strategy extremal to the closed sets Z; C Ep,, . Here z is vector
from ™ Z,, closest to D™ z (s} , where n™: E,.. = Egm-insn is the
operator of projection onto the last (m — i (f) 4 1)r coordinates. The strategy
V* extremal to Z; is defined analogously ,
For an arbitrary ¢ >> 0 we choose the number 6 (g) 2> 0 so as to fulfil the

P 2@ — 2O <o [ =ty | <8 26 X (8)(4.2)

The number 8 (&) exists by virtue of the compactness of sheaf X (fy, Zo (5)) in
C" [t,, 8] . We introduce the sets

N (@) = [&;, &1l X Egam X M* X Eneipny i=1,....m
m m

N (@) = [J N (@)
)

assuming @ > 0.  Obviously,set &V (m}(o&) is closed in [2y, 9] X E . We de-
note: p;™: Ep, — E, is the operator of projection onto the coordinates numbered
(i(® —Nn +1, ..., i(¢)n. Similarly to Lemma 3,2,using estimate (4.2) we
can establish

Lemma 4,1, Let ,%* << 08 (g), the closedsets Z; (C E,,, be u-stable
relative to  N(™ (@) (be strongly u -stable) for system (4.1) and D, ™z (s)
€ Zy,- Then the strategy U, (V,) extremal tosets Z; ensures that the foll-
owing condition is fulfilled for the motions = [t] =z lt; po, U (:c [t] =z 4
Por Vi) ofsystem (1.1): z [2,] & M™° forsome #y & to, Iz [t ] =
(pg*(m) Z,)r forall t, & [t, Bl).
We introduce notation: 1V ,* are sets of position absorption of M by  system
(1.1) by instant & ; W,m (a) are sets of position of absorption of M by system
(4.1) by instant ¢ .

Theorem 4,1, If Zo(s) & Wy*, then forany &€ > 0, & >> 0 andm such
that @,,* < min {§ (@ / 2), 8 (e)} the strategy U, extremal to W/ m){a) ensures
that the motions z [¢] = z [#; p,, U, ] fall into Me+e by instant § . The theorem
can be established by using Lemma 4, 1 and the properties of sets W¥,(") ().



218 A.V.Kriazhimskii and V, I, Maksimov

5, Let us study the problem 3 an evasion of target M, assuming the existence
of aset R satisfying the relation P = Q 4- R. Let Y (¢, E) be the funda-
mental matrix of the homogeneous system corresponding to system (2.1); Y0 (¢, &)
be the matrix composed from the first & rows of matrix Y (¢, E); A ;i H—

E(mzﬂ),, be an operator of the form

A () = O, ..., ¥, YO =2(0)
—(i—1) o,
y(i) — (o,-r:h S x (s) ds, i=1,...,m

-—tﬁ)m

yﬁ* = A;ﬁxo (3)

t

ke ={{ Yot 0 O &l @SR CH
ty

Le(t)= Y2t to)ye* + K2 (1) + {Y,° ¢, Byw, () dE

to
my=max {i|t —io, >, i=0,..., m}

Wy ) =w®,0, ..., 0) = E(m-{-lt)n

R, =R x]] {0}

i=1

Here {0} is the set consisting of the null vector of space E,,.
We define the strategy V,, by the system of sets V,, (¢, 2 (s)) of the form

Van(t, 2(5)) = 0* | (@ (8, 2(5)) — [Amz ()] D) v* =
max (@, 2(5)) — [Am, = (5))”) v}

Here g(t, z(s) = {9, 2 (). ..., g(mf) (t, z (s))} is the element of set
A:“L,,"(t -+-s)closest to A;tz (s).

Theorem 5,1, Forsomenumber ¢ >0 let L,°(t) ) Mt = & for
any instant ¢ & [y, ®]. Then we can find a number N such that the strategy
V. solvesproblem 3 forall m >N .

The theorem *s proof relies on the results in [7, 10}, We note that whenset M
is convex the hypothesis on Theorem 5. 1 is fulfilled if the quantity e (4,, Z, z, (s))
defined in [2] is greater than zero for all ¢ &= [t,, 9.

The authors thank N, N, Krasovskii and Iu, S, Osipov for formulating the problem
and discussing the results,
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